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ABSTRACT 

Hard-bodied robots’ operations always are limited because of their rigid structures. 

Recently, researchers has been inspired by some animals because they can exhibit complex 

movement with soft structure. Conventional manipulators operate difficultly because of their rigid 

links in some highly congested environments. They design soft robots, to replace traditional robots 

with rigid links. With a soft structure and large degrees of freedom, these robots can be used for 

tasks in highly congested environments. The elephant trunk is one of the most used models due to 

its high flexibility. Its shape can be changed when pressurized by air. Our study focuses on 

designing and fabricating a pneumatic soft actuator inspired by elephant trunk, and testing 

pneumatic actuations with a focus on achieving its multiple freedom of degree movement. 

Normally, Soft robots are always actuated by variable length tendons embedded in the soft 

segment. Compared to the traditional approach, pneumatic actuation does not damage the actuator 

because no more complex components need to be fabricated in the actuator. 

 Studying small model organisms such as Caenorhabditis elegans provides great 

opportunities for securing diseases in humans. C. elegans is easily grown in the laboratory, with 

maintained in agar-filled petri dishes. These small model organisms also have huge potential for 

use in drug delivery and image-based screening. There are many developments in microfluidic 

technologies for imaging small model organisms.  Due to severe constraints of volume, Shadow-

imaging is one of methods that can record the locomotion of nematodes. The microfluidic device 

is put on the top of the the camera chip, and the light source is put on the top of the device. Our 

study focuses on designing a microfluidic device to facilitate high-throughput, imaging-based 

screening of microscopic nematodes. It involves fabricating microfluidic device, designing and 
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integrating siphon-based suction mechanism with multiple channels, and using the raspberry-pi 

camera to record the movement of nematodes in channels. 
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GENERAL INTRODUCTION 

Bioinspired Soft Robotics 

 In nature environment, animals use their soft structure to move effectively. Researchers are 

inspired by these capabilities soft lithography technologies are implemented into their designs [1]. 

The purpose is to make soft robots with bio-inspired capabilities that allow flexible movement in 

congested environments. Human-made robots are mainly designed to be in order to perform 

precise tasks. Normal actuators are composed of rigid electromagnetic components or some 

internal engines made of steel and aluminum alloys [2]. By contrast, the majority of animals are 

soft bodied, and even animals with stiff skeletons are almost entirely soft.  Besides, some parts 

of animal bodies that play important roles in locomotion are highly deformable either.  

Studying how animals use their soft bodies to move in complex environments can 

provide important assistances for using robotic applications in medicine, rescue, and human 

assistance [3]. Those situations require robots to deal with unexpected movement with 

unstructured environments or humans. Soft robotics aims to build robots for the unpredictable 

needs of such situations by stimulating them with their capabilities that are based in material 

properties. Its purpose is to achieve better mechanisms by stimulating the mechanical intelligence 

of soft materials either. 

Soft materials are essential and important to the mechanical design of animals. They 

provide many advantages in order to help animals move in highly congested environments [4]. 

They distribute stress over a large volume, and increase contact time in order to reduce the inner 

forces. For example, Animals enter into small areas for hunting relying on their highly flexible 

structures [5]. However, soft structures have limitations. Soft animals needs to be small since it is 

difficult for them to support their own body weight. All of the extremely large soft animals are 
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found in water, because their bodies are supported by surrounding medium. Similar limitations 

apply to soft robots because it is necessary to select materials to match size functionally. Additionally, 

the high deformability properties of soft tissues limit speed of movement [6].  

One of the biggest challenges in soft robotics is designing suitable actuation systems to 

achieve the functionality of muscles in the animal body. The ability of soft animals changing their 

body shape depends on a large amount of muscles being distributed over the body. Three actuation 

techniques are now widely used. The first technique is to use dielectric elastomeric actuators 

(DEAs) made of soft materials that actuate through electrostatic forces [7]. This technique has 

limitations. Using DEAs requires a rigid frame that fixes the elastomer normally. A few designs 

work without rigid components, but they yield low stress, and their fabrication process is very 

complex. The second technique is to use shape memory alloys (SMAs) [8]. Researchers create 

coils from a thin wire to amplify the strain. It allows SMAs to be formed into highly flexible 

springs that can be integrated into a soft structure. However, temperature change affects force 

generation in SMAs. Overheating might easily damage the actuator permanently. The third 

technique is to use compressed air and pressurized fluids [9]. Compressed air and fluid can deform 

soft body directly using channels in elastomers to inflate chambers and create movement in 

robots.  
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Microfluidic Imaging System for the analysis of behavior in C. elegans 

 Caenorhabditis elegans have been used as an experimental tool because of its short life 

span [10]. With a small and flexible body, it is hard to manipulate C. elegans. C. elegans lives in the 

soil and feeds on bacteria.  

 Microfluidic technology has been used to manipulate C. elegans recently. Some unique 

advantages of microfluidic technology help make good applications in C. elegans [11]. First, 

microfabrication techniques are cheap and simple because soft lithography technology are 

invented by dedicated researchers. Second, polydimethylsiloxane is a kind of transparent material, 

which allows transmission of light. Lastly, microfluidic techniques can help manipulate small 

amounts of liquid and provide fast analysis of small size C. elegans [12]. 

 In order to get information from samples, imaging techniques are significant in 

microfluidics [13]. Microscopes achieve taking images in microfluidic devices conventionally. 

Recently, researchers have been developed many imaging techniques to find a good solution [14]. 

Shadow imaging is a better method to take images of samples properly. The sample is put above 

a camera chip and its shadow is observed directly by camera. The imaging system including 

shadow imaging technique is not complex but the image resolution is not good enough sometimes. 

To consider about this issue, the resolution depends on the distance between the sample and the 

camera, and the pixel size of the camera that researchers use. 
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CHAPTER 1.  BIOMIMETIC MULTIPLE-CHAMBER PNEUMATIC SOFT 

ACTUATOR WITH VARIABLE STIFFNESS 

Abstract 

 

This paper reports on a biological inspired pneumatic soft actuator using highly stretchable 

elastomer. Six air chambers are embedded in the actuator with each three controlling bending and 

rotating for one segment. This provides a joint motion for the actuator. Pneumatic pumping 

increases the mechanical stiffness of the actuator. Our studies include designing and testing 

pneumatic actuations with a focus on achieving its multiple freedom of degree movement.  

 

Keywords: pneumatic actuation, bending mode, elephant trunk, stiffness 
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Introduction 

Traditional hard-bodied robots are used widely in industry. They can be specifically built 

to complete tasks that require rapid movement, and precise actions. Because they are built of rigid 

components, it is unsafe if they are used for interaction with human beings. Soft robots provide an 

opportunity to interact between robots and humans. Human-friendly materials such as Ecoflex and 

PDMS are often used to build soft robots. On the other hand, soft robots are able to bend with large 

angular movement and thus can be used in highly congested spaces [1,2]. Hard-bodied robots are 

often costly, heavy and difficult to control [3,4]. However, hard-bodied robots designed to be 

lightweight are easy to be damaged by impact or compression. Their joints are especially 

vulnerable to collisions and bending, since small deformations can make their components position 

wrongly [5,6].  

 

Soft robots can be deformed continuously and achieve complex motions that emulate 

biology [7]. Recently, biological inspired soft robots are mainly designed to involve in 

manipulating objects [8], moving on rough terrain like underwater [9] and medical applications 

such as soft orthotics for ankle rehabilitation [10] and soft sensing suits for lower-limb 

measurement [11]. Researchers developed a lot of structures for soft robots based on most flexible 

animals like caterpillar [12], squids [13] and octopus [14] that own soft bodies. Compared to hard-

bodied robots, materials of soft robots are often lighter and less expensive. Besides, because they 

are fabricated from elastomers, they can provide more complex joint motions. However, they resist 

damage such as bending) better than hard links. 
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There are usually two ways to actuate soft robots: variable length tendons such as shape-

memory alloy (SMAs) actuators [16] or tension cables [15], for example, robotic octopus arms 

[16]; or using pneumatic actuation to inflate channels to make it deform continuously. One 

problem with current soft robots is that how soft an actuator needs to be in order to meet its true 

potential. Instead of setting the stiffness of robots by changing their materials, another method is 

to control soft robots’ stiffness. For example, one traditional way is embedding soft robots with 

stiffer materials such as metal [17] or wax [18. Embedded heaters can adjust robots’ stiffness 

because metal or wax can be thermally softened. However, heating stiffer materials may damage 

the soft actuator together and positioning embedded heaters properly is also a problem if the 

actuator is very small. Pneumatic actuation has been used to inflate chambers and the actuator can 

be stiffer. Compared to the traditional approach, pneumatic actuation does not damage the actuator 

and the operation is simple because no more complex components need to be added in the actuator. 

Recently, Dr. C. Lekkakou studied the design and testing of skins and sleeves for soft 

robotics. They focus on the mechanical design of the microstructure of those skins inspired from 

some animals with soft bodies [19]. Our paper aim at designing and fabricating a soft pneumatic 

actuator with multiple chambers which can perform more complex joint motions. The material of 

soft actuator is a highly elastomeric siloxane (Ecoflex). We tested the stiffness of the actuator 

under different applied air pressure and showed how the actuator achieve various bending modes 

with an improved stiffness under pneumatic actuation. 
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Design and Fabrication 

This report shows the development of a six-chamber robotic actuator which resembles an 

elephant trunk that has two segments. Figure 1.1(c) displays a soft cylindrical actuator inspired 

from the elephant trunk with six pneumatic chambers, which can offer multiple bending 

modes. The actuator is comprised of two segments which includes one six-chamber segment and 

one three-chamber segment. The six-chamber soft actuator inspired from elephant trunk is able to 

bend when air pressure is applied to the chamber (Figure 1.2). Since the material is highly 

elastomeric, air pressure impacts on the inner wall of the chamber. The inner space of the chamber 

will expand and the actuator would bend by some angles which like an elephant trunk does. The 

mold of making a three-chamber actuator or a six-chamber actuator is shown in Figure 1.1(a). The 

only differences are the number and the length of chambers. All components include one large 

hollow tube, a number tubes and one base. Long chambers are 5 cm long which is as twice as short 

chambers. The diameter of chambers’ bottom surface is 1.6 mm. Figure 1.1(d) shows the whole 

process of developing a six-chamber soft actuator. 
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Figure 1.1. (a) The mold of making the three-chamber robotic actuator and six-chamber robotic 

actuator; (b) side view of the six-chamber robotic actuator; (c) bottom view of the six-chamber 

robotic actuator; (d) basic process of fabrication of the six-chamber robotic actuator 
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Results and Discussions 

The six-chamber soft actuator can provide in-plane bending under applied air pressure. 

Figure 1.2 shows the effects of the six-chamber soft actuator after being driven by different air 

pressure applied in one long chamber. Bending by more than 90 degree is achieved easily and the 

actuator seems stiffer under higher applied air pressure [Figure 1.2(e), Figure 1.2(f)]. The actuator 

can bend by larger angle with a small increase of applied air pressure because of high deformability 

of the material (Figure 1.4). Besides, applying a same air pressure in two long chambers can 

achieve in-plane bending with higher mechanical stiffness (Figure 1.3).  

    

 

 

Figure 1.2. (a)-(f): The process of applying air pressure in one chamber of six-chamber robotic 

actuator; (g) schematic of applying air pressure in one chamber of six-chamber robotic actuator 
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Figure 1.3. (a)-(f): Apply same air pressure in two chambers of the six-chamber robotic actuator; 

(g) schematic of applying same air pressure in two chambers of the six-chamber robotic actuator 
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The stiffness of the six-chamber soft actuator can be much higher with applying a same air 

pressure in all six chambers. Six chambers located near each other would help reduce the risk of 

the ballooning effect to avoid bursting since the impact caused by applied air pressure can help 

every chamber squeeze each other. 

Figure 1.4. Pumping different air pressure into one long chamber of the six-chamber 

actuator 
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In order to prove that the stiffness of the robotic actuator increases by increasing applied 

air pressure, one edge of the device is fixed and a weight is hanged at the middle of the robotic 

arm. With increasing the weight of the stuff, we measure the height that the robotic actuator drops, 

the stiffness of the device can be obtained according to Eq.1 [Figure 1.5(a)]. Table 1 shows that 

the stiffness of the six-chamber actuator is higher than the three-chamber one when applying a 

same air pressure in all chambers. Besides, improving applied air pressure also increase the 

mechanical stiffness of the actuator.  

� =
�������

(	��	�)
  (Air pressure P1 pumped)                                                                                Eq. 1.1

  

 Where �� and � are the mass of the weight, g is gravitational acceleration, �� and � 

are the height difference between the final position and the initial position shown in Figure 1.5(c). 
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Figure 1.5. (a) Process of measuring the stiffness of the six-chamber robotic actuator with 

applying same air pressure in three long chambers; (b) the relationship of the force the six-chamber 

robotic actuator suffers from and the height the six-chamber robotic actuator drops under applying 

same air pressure in three long chambers; (c) schematic of measuring the stiffness of the six-

chamber robotic actuator with applying same air pressure in six long chambers  
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Table 1.1. The corresponding stiffness of the three-chamber and six-chamber robotic actuator with 

increasing applied air pressure in all chambers  

Inputted actuation air pressure (kPa) 0 18.9 27 

Stiffness of the three-chamber 

robotic actuator(N/m) 

32.86 51.11 71.25 

Stiffness of the six-chamber robotic 

actuator(N/m) 

33.95 70.34 96.25 

 

The joint motion can take place via applying air pressure in chambers which are of different 

lengths (Figure 1.6). It’s necessary since the joint motion can stabilize the structure of the device. 

Figure 6(a) shows one of joint motions the six-chamber actuator can achieve. The actuator owns 

excellent flexibility with a larger angular movement. 
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Figure 1.6. (a) The process of the six-chamber robotic actuator bending with applying air pressure 

into two farthest chambers in turn (b) schematic of the six-chamber robotic actuator bending with 

applying air pressure into two farthest chambers in turn 

Various three-dimensional bending modes can be achieved when the air pressure is applied 

in different chambers of six-chamber actuator. Figure 1.7 shows one of process that the six-

chamber robotic actuator rotates in three-dimensional space. Bending in three-dimensional space 

can improve the imaging area compared to in-plane bending. 
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Figure 1.7. (a) The process of the six-chamber robotic actuator bending with applying air pressure into two 

short chambers and one long chamber (Top view) (b) the process of the six-chamber robotic actuator 

bending with applying air pressure into two short chambers and one long chamber (cross-section view) 
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Conclusions 

Pneumatic actuation in soft robotics inspired by animals is often used in reality. A number 

of skin structures were designed after inspiration from nature and architecture. A highly 

elastomeric siloxane (Ecoflex) is used to build the soft actuator in our design. Applying air pressure 

in different chambers helps the actuator achieve different bending modes in two-dimensional or 

three-dimensional space. High stiffness is a significant requirement if the six-chamber soft robotic 

actuator needs to work as current robots with rigid manipulators. The stiffness of the six-chamber 

actuator increases when air pressure is applied into chambers.  
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CHAPTER 2. MICROFLUIDIC IMAGING SYSTEM FOR ANALYZING NEMATODES 

LOCOMOTION 

Abstract 

 This article reports on a microfluidic imaging system for tracking nematodes C. elegans 

locomotion. The well-plate is placed at relatively higher position compared to the flow-diverting 

device. Liquid medium is pumped to infuse and fill the plastic tubings through the flow-diverting 

device, to create syphon effect. When the medium flow out of the plate into the flow-diverting 

device, 24 channels in the flow-diverting device made by PDMS (Polydimethylsiloxane) serve as 

imaging channels, where worms’ shadows are imaged by the camera sitting below. 

Keywords: C.elegans, microfluidics, shadow imaging, syphon effect   
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Introduction 

Researchers has used C.elegans as a tool to address biological questions because of its 

versatility in simple nervous system, and short life span [1, 2].  However, it is challenging to track 

nematodes locomotion due to their small and flexible bodies. Thus, there is a need for high-

throughput imaging techniques that can be used to study such behaviors. 

Because PDMS is transparent, images with high quality can be taken easily which perform 

behaviors of animals in microfluidic devices [3]. Besides, due to small size of channels, small 

amounts of liquid can be manipulated and it provides precise analysis of C. elegans [4]. 

Additionally, making microfluidic devices is relatively cheap since the technique of soft 

lithography is widely used in microfabrication more recently. 

Taking images of nematodes locomotion is important for getting information from 

microfluidic devices. Researchers often used Traditional microscopes to observe nematodes in 

microfluidic devices [5,6,7]. Well-developed microfluidic devices are able to be directly put into 

the imaging system. However, traditional large imaging systems cannot hold the on-chip 

microfluidic devices well. In order to solve this issue, much researchers have paid efforts to 

develop compact imaging systems that microfluidic devices can be integrated with the imaging 

system. The imaging system can be divided into two parts. First, the imaging system are developed 

based on lens imaging. They are designed to be compatible with microfluidic devices [8,9,10]. 

Second, lens-less imaging systems are developed in order to make the whole system more compact 

since no more lens are added [11,12,13]. We use lens-less shadow imaging technique to record 

nematodes C. elegans locomotion in micro channels. The structure of whole system is simple to 

be built. 
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Design and Fabrication 

 The whole microfluidic system includes two major components: a flow-diverting device 

being used as a carrier of C. elegans and a camera [Figure 2.1]. In order to let the medium with 

worms flow spontaneously in the flow-diverting device, we design a integrating syphon-based 

suction mechanism [Figure 2.2]. The process includes two modes: initialization mode and 

pumping mode. In initialization mode, liquid medium is pumped to infuse and fill the plastic 

tubings through the flow-diverting device on the table, to create syphon effect. In pumping mode, 

the medium (containing worms) are automatically flowed out of the plates into the diverting 

device. Now, the 24 channels in the diverting device serve as imaging channels. 

 

 

Figure 2.1. Schematic of siphon-based microfluidic imaging system 
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The material of flow-diverting device is PDMS (Polydimethylsiloxane). It contains 24-

channels and the width each channel is 0.5 mm so that nematodes can flow through it successfully. 

The flow-diverting device has one port on one end, and 24 ports on the other end [Figure 2.2].  

 

 

 

 

(a)                                                (b) 

Figure 2.3. (a) The flow-diverting device made in PDMS (b) The structure of 24-channel flow-

diverting device 

 To fabricate the flow-diverting device, we use SU-8 100 photoresist. In order to let 

nematodes flow successfully through the device, each channel’s thickness is 100 µm. 

Figure 2.2. The process of Syphon-based suction mechanism. 
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 The shadow imaging system mainly consists of two major components: A light source is 

placed on the top of the device and a camera is affixed below [Figure 2.3].  

  

 

 We used Raspberry-pi camera due to its small size and relatively low price. Besides, its 

resolution is 3280 × 2464 

pixels, which is enough to record images with high quality. However, in order to successfully 

record nematodes’ locomotion, a lens is fixed on the camera so that when the camera is put closer 

the flow-diverting device, it can still take high-quality image [Figure 2.4]. Only if camera is close 

enough to the device, nematodes locomotion can be recorded since each nematode’s length is only 

around 300 µm.  

  

(a)                                                                         (b) 

Figure 1.5. (a) Front view of Shadow imaging system (b) top view of shadow imaging system 

  

Figure 2.4. Working principle of shadow imaging technique 
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Result and Discussion 

 By applying shadow imaging technique, the image quality is good and nematodes’ 

movement can be recorded successfully [Figure 2.4]. 

 

                 Figure 2.6. Recorded nematodes in one channel by shadow imaging  

  

    Flow rated is calculated. The volume of each well is around 4.58cm^3 and the time lasts 

8 minutes and 40 seconds. The average flow rate is 0.0088cc/s. In this condition, the height 

difference between 24-well plate and the flow-diverting device is 13 cm. By controlling the 

height difference between 24-well plate and the flow-diverting device, we can control the flow 

rate. While we increase height difference between 24-well plate and the flow-diverting device, 

the flow rate is larger.  

  

Conclusions 

 C. elegans has been widely used as a genetic tool to address some fundamental biological 

questions. With microfluidic devices made by transparent materials (PDMS), shadow imaging 

techniques can be used properly to record nematodes’ locomotion. Raspberry pi camera is one of 

perfect options due to its low price, high resolution and small size. Pumping-mode of our process 

only lasts 20 minutes, which dramatically increases the efficiency compare to some traditional 

techniques.   
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CHAPTER 3  SUMMARY AND CONCLUSIONS 

 The major work presented in this thesis includes two parts. The first project is about designing 

a biomimetic soft actuator inspired by elephant trunk. The second project is about developing a 

microfluidic device to record nematodes’ locomotion by shadow imaging technique. 

 For the biomimetic soft actuator’s project, we fabricated the actuator using Ecoflex, which is 

even softer than PDMS. It provides the actuator good flexibility so that it can bend for large degree 

of freedom. By measuring stiffness, it proves that the soft actuator can be very stiff under large air 

pressure applied. Achieving multiple bending modes is another success since in the future, some 

practical application like setting an endoscope on the actuator might be considered because it can 

rotate freely.     

 For the nematodes’ project, we use C. elegans as our tool because of its versatility in behavior, 

simple nervous system and short life cycle. A 24-channel microfluidic device is used as a flow-

diverting device and compared to traditional analyzing process, our pumping-mode save a lot of 

time and nematodes. Shadow imaging technique is used to record nematodes movement. 

Compared to traditional lens-free shadow imaging technique, we used a Raspberry pi camera 

combined with two lens. The Raspberry pi camera offers higher resolution and its price is very 

low.   
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CHAPTER 4      FUTURE WORK 

 For the first project, we will consider some practical applications used on the actuator. An 

endoscope or a camera chip might be considered since their small size and light weight. More 

bending modes may be observed if we distribute all chambers differently. 

 For the second project, it’s hard now to accurately record all 24 channels at the same time. We 

will try different lens combined with our camera till that when we place the camera at a proper 

distance to the flow-diverting device, it can successfully record all 24 channels at the same time. 

Besides, Controlling the speed of fluids flowing is another important issue. Trying to change height 

difference between the well-plate and the flow-diverting device, or changing tubes which are used 

to connect the plate and the microfluidic device, is some good option. 
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